About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work.
نویسندگان
چکیده
The efflux of drugs by the multidrug transporter P-glycoprotein (Pgp; ABCB1) is one of the principal means by which cancer cells evade chemotherapy and exhibit multidrug resistance. Mechanistic studies of Pgp-mediated transport, however, transcend the importance of this protein per se as they help us understand the transport pathway of the ATP-binding cassette proteins in general. The ATP-binding cassette proteins comprise one of the largest protein families, are central to cellular physiology, and constitute important drug targets. The functional unit of Pgp consists of two nucleotide-binding domains (NBD) and two transmembrane domains that are involved in the transport of drug substrates. Early studies postulated that conformational changes as a result of ATP hydrolysis were transmitted to the transmembrane domains bringing about drug transport. More recent structural and biochemical studies on the other hand suggested that ATP binds at the interface of the two NBDs and induces the formation of a closed dimer, and it has been hypothesized that this dimerization and subsequent ATP hydrolysis powers transport. Based on the mutational and biochemical work on Pgp and structural studies with isolated NBDs, we review proposed schemes for the catalytic cycle of ATP hydrolysis and the transport pathway.
منابع مشابه
CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line
Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...
متن کاملAssociation between ABCB1-T1236C Polymorphism and Drug-Resistant Epilepsy in Iranian Female Patients
Background: One third of epileptic patients are resistant to several anti-epileptic drugs (AED). P-glycoprotein (P-gp) is an efflux transporter encoded by ATP-binding cassette subfamily B member 1 (ABCB1) gene that excludes drugs from the cells and plays a significant role in AEDs resistance. Over-expression of P-gp could be a result of polymorphisms in ABCB1 gene. We studied the association of...
متن کاملPermanent activation of the human P-glycoprotein by covalent modification of a residue in the drug-binding site.
The human multidrug resistance P-glycoprotein (ABCB1) transports a broad range of structurally diverse compounds out of the cell. The transport cycle involves coupling of drug binding in the transmembrane domains with ATP hydrolysis. Compounds such as verapamil stimulate ATPase activity. We used cysteine-scanning mutagenesis of the transmembrane segments and reaction with the thiol-reactive sub...
متن کاملCryo-EM Analysis of the Conformational Landscape of Human P-glycoprotein (ABCB1) During its Catalytic Cycle
The multidrug transporter P-glycoprotein (P-gp, ABCB1) is an ATP-dependent pump that mediates the efflux of structurally diverse drugs and xenobiotics across cell membranes, affecting drug pharmacokinetics and contributing to the development of multidrug resistance. Structural information about the conformational changes in human P-gp during the ATP hydrolysis cycle has not been directly demons...
متن کاملAssociation of ABCB1 Gene Polymorphisms and Clopidogrel Responsiveness in Iranian Patients undergoing Percutaneous Coronary Intervention
Clopidogrel is an antiplatelet agent currently used for preventing stent thrombosis. Despite certain clinical benefits of clopidogrel in patients undergoing percutaneous coronary intervention (PCI), adequate antiplatelet effect has not been obtained in some patients. The present study was designed to investigate the potential association of ABCB1 (ATP-Binding Cassette, Subfamily B, member1) gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2007